On the power-commutative kernel of locally nilpotent groups

نویسندگان

  • Costantino Delizia
  • Chiara Nicotera
چکیده

A group G is called power commutative, or a PC-group, if [xm, yn] = 1 implies [x, y] = 1 for all x, y ∈G such that xm = 1, yn = 1. So power-commutative groups are those groups in which commutativity of nontrivial powers of two elements implies commutativity of the two elements. Clearly, G is a PC-group if and only if CG(x) = CG(x) for all x ∈ G and all integers n such that xn = 1. Obvious examples of PC-groups are groups in which commutativity is a transitive relation on the set of nontrivial elements (CT-groups) and groups of prime exponent. Recall that a group G is called an R-group if xn = yn implies x = y for all x, y ∈ G and for all positive integers n. In other words, R-groups are groups in which the extraction of roots is unique. A result due to Mal’cev and Cernikov (see, e.g., [3]) states that every nilpotent torsion-free group is an R-group. There is a natural connection between PCgroups and R-groups. For, as pointed out in [3], a torsion-free group is a PC-group if and only if it is an R-group. In [5], Wu gave the classification of locally finite PC-groups. In particular, she proved that a finite group is a PC-group if and only if the centralizer of each nontrivial element is abelian or of prime exponent. This result implies that a finite group having a nontrivial center is a PC-group if and only if it is abelian or it has prime exponent. Moreover, the class of PC-groups is contained in the class of groups in which the centralizer of each nontrivial element is nilpotent. This class of groups was investigated by many authors (see, e.g., [1, 4]). In analogy to what is done in [2] to define the commutative-transitive kernel of a group, we introduce an ascending series

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group rings satisfying generalized Engel conditions

Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1)  y]=[[x ,_( n)  y]  , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y)   ,_( n(x,y))  y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...

متن کامل

NILPOTENT GRAPHS OF MATRIX ALGEBRAS

Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...

متن کامل

On continuous cohomology of locally compact Abelian groups and bilinear maps

Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...

متن کامل

Power-Commutative Nilpotent R-Powered Groups

If R is a binomial ring, then a nilpotent R-powered group G is termed power-commutative if for any α ∈ R, [gα, h] = 1 implies [g, h] = 1 whenever gα 6= 1. In this paper, we further contribute to the theory of nilpotent R-powered groups. In particular, we prove that if G is a nilpotent R-powered group of finite type which is not of finite π-type for any prime π ∈ R, then G is PC if and only if i...

متن کامل

Generic Flatness and the Jacobson Conjecture

A result of Artin, Small, and Zhang is used to show that a noetherian algebra over a commutative, noetherian Jacobson ring will be Jacobson if the algebra possesses a locally finite, noetherian associated graded ring. This result is extended to show that if an algebra over a commutative noetherian ring has a locally finite, noetherian associated graded ring, then the intersection of the powers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005